SKU/Artículo: AMZ-B0G2PQ1139

FINE-TUNING LLMS FOR REAL-WORLD AI SYSTEMS: PRACTICAL TECHNIQUES FOR LLMS FINE-TUNING, PARAMETER-EFFICIENT TRAINING, LORA, QLORA, RAG OPTIMIZATION, AND DEPLOYING CUSTOM MODELS AT SCALE

Disponibilidad:
Fuera de stock
Peso con empaque:
0.33 kg
Devolución:
No
Condición
Nuevo
Producto de:
Amazon

Sobre este producto
  • Comprehensive Fine-Tuning Strategies: Learn supervised fine-tuning, instruction-tuning, and domain adaptation to make LLMs excel at your specific tasks.
  • Parameter-Efficient Training: Apply LoRA, QLoRA, and PEFT methods to train powerful models with minimal compute and cost.
  • Advanced Dataset Engineering: Curate, augment, and optimize datasets to maximize model performance and reliability.
  • RAG and Retrieval Optimization: Integrate your fine-tuned LLMs with retrieval-augmented generation pipelines to minimize hallucinations and boost factual accuracy.
  • Deployment at Scale: Learn to serve models efficiently, implement monitoring and logging, and optimize inference for real-world applications.
  • Production-Ready Workflows: From experiment tracking to CI/CD pipelines, understand how professional AI teams operationalize LLM systems.
  • AI engineers and developers building real-world NLP and LLM applications.
  • Data scientists seeking to specialize in production-ready LLM fine-tuning.
  • Technical founders and product teams deploying custom AI solutions.
  • Anyone serious about mastering modern LLM optimization techniques and building scalable, reliable AI systems.

Producto prohibido

Este producto no está disponible

Este producto viaja de USA a tus manos en
Medios de pago Tarjetas de Crédito y Débito

Compra protegida

Disfruta de una experiencia de compra segura y confiable