SKU/Artículo: AMZ-B0FRSZXTNB

Embedding-Based Retrieval in Action: Real-World AI Applications with Semantic Search and RAG 2.0 for RAG Workflows, and Vector Databases

Disponibilidad:
Fuera de stock
Peso con empaque:
0.33 kg
Devolución:
No
Condición
Nuevo
Producto de:
Amazon

Sobre este producto
  • Foundations of Embeddings and Retrieval – how AI moved from keyword search to dense vectors.
  • Semantic Search Explained – principles, limitations of traditional search, and similarity metrics.
  • Introduction to RAG and RAG 2.0 – why grounding matters and how RAG 2.0 enhances reliability.
  • Working with Vector Databases – Pinecone, Weaviate, Milvus, FAISS, schema design, and performance.
  • Building Retrieval Pipelines – ingestion, querying, ranking, and evaluating quality.
  • Embeddings in Practice – generating, fine-tuning, and balancing pretrained vs. custom models.
  • RAG 2.0 in Real Applications – chatbots, enterprise assistants, and recommendation systems.
  • Scaling and Deployment – distributed systems, Kubernetes, serverless strategies, and cost optimization.
  • Evaluation, Security, and Compliance – benchmarks, reducing hallucinations, explainability, and privacy.
  • Future Directions – multimodal retrieval, emerging trends in vector databases, and the role of embeddings in agentic AI.

Producto prohibido

Este producto no está disponible

Este producto viaja de USA a tus manos en
Medios de pago Tarjetas de Crédito y Débito

Compra protegida

Disfruta de una experiencia de compra segura y confiable