SKU/Artículo: AMZ-B0FBL97WYJ

Vector Databases in Action: Scalable Retrieval for AI, RAG, and Agent Memory Systems (The Automation Stack)

Disponibilidad:
Fuera de stock
Peso con empaque:
0.33 kg
Devolución:
No
Condición
Nuevo
Producto de:
Amazon

Sobre este producto
  • Fundamentals of Vector Representations – Understand embeddings, similarity metrics, and dimensionality reduction.
  • Indexing and Nearest-Neighbor Search – Master HNSW, IVF, and other ANN structures for blazing-fast lookups.
  • Architectures of Vector Databases – Explore storage engines, sharding, and deployment strategies (cloud vs. open-source).
  • Getting Started with Leading Vector DBs – Step-by-step walkthroughs for Pinecone, Weaviate, Milvus, Qdrant, and Chroma.
  • Integrating with LLMs and RAG Workflows – Build retrieval pipelines that feed context into large language models for accuracy and coherence.
  • Vector Databases as Agent Memory – Design short- and long-term memory stores so your bots recall user preferences across sessions.
  • Multi-Modal and Advanced Use Cases – Implement image/audio search, real-time recommendations, and anomaly detection with vectors.
  • Performance Tuning and Monitoring – Benchmark, fine-tune parameters, and set up alerts to maintain SLAs.
  • Security, Privacy, and Access Control – Apply encryption, anonymization, and audit logging to protect sensitive data.
  • Production Patterns and Deployment – Automate schema changes, use blue-green releases, and craft disaster recovery plans.
  • Case Studies – See semantic search at scale, agent-driven support, e-commerce recommendations, and live anomaly monitoring in action.
  • Future Directions – Discover federated indexes, on-device search, and self-tuning architectures powered by reinforcement learning.

Producto prohibido

Este producto no está disponible

Este producto viaja de USA a tus manos en
Medios de pago Tarjetas de Crédito y Débito

Compra protegida

Disfruta de una experiencia de compra segura y confiable